
plotit

Pieter David, the CP3-CMS team

Jan 09, 2024

CONTENTS

1 Table of contents 3
1.1 Getting started . 3
1.2 Overview . 6
1.3 Architecture . 6
1.4 Reference . 7

2 Indices and tables 9

i

ii

plotit

The plotIt tool was developed to efficiently produce large numbers of stack plots that use the same set of samples. It
is a standalone C++ executable that is very good at what it does, but it is not very customisable or flexbile: sometimes
one “just” wants to get a few histograms to make a specific plot instead of a whole batch, but still take advantage of the
information stored in the configuration file and the naming conventions.

This package tries to bridge that gap: it aims to provide a simple python interface to the de-facto file format defined by
plotIt: a YAML configuration file and a director of ROOT files with histograms. Basic plotting methods are provided,
but they are currently far from supporting all the styling options of plotIt.

CONTENTS 1

https://github.com/cp3-llbb/plotIt
https://github.com/cp3-llbb/plotIt
https://root.cern
https://github.com/cp3-llbb/plotIt

plotit

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Getting started

1.1.1 Installation

pyplotit is a pure python package, so the latest version can be installed with

pip install git+https://gitlab.cern.ch/cp3-cms/pyplotit.git

or, for an editable install when frequent updates and/or testing of changes is expected, with

git clone https://gitlab.cern.ch/cp3-cms/pyplotit.git
pip install -e ./pyplotit

1.1.2 Example: loading histograms from a plotIt configuration

If you do not have a plotIt configuration and the corresponding ROOT files around, you can use the following commands
to generate an example; they are also used here for the rest of the example

!wget -q https://gitlab.cern.ch/cp3-cms/pyplotit/-/raw/master/tests/data/ex1_syst.yml
!wget -q https://raw.githubusercontent.com/cp3-llbb/plotIt/master/test/generate_files.C
!mkdir -p files
!root -l -b -q generate_files.C

Processing generate_files.C...

We can load the configuration file ex1_syst.yml in pyplotit as follows:

import plotit
config, samples, plots, systematics, legend = plotit.loadFromYAML("ex1_syst.yml")

ValueError Traceback (most recent call last)
Cell In[2], line 1
----> 1 import plotit

2 config, samples, plots, systematics, legend = plotit.loadFromYAML("ex1_syst.yml")

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/site-
→˓packages/plotit/__init__.py:1

(continues on next page)

3

https://gitlab.cern.ch/cp3-cms/pyplotit

plotit

(continued from previous page)

----> 1 from .plotit import loadFromYAML
2 from .version import version as __version__
4 __all__ = ("__version__", "loadFromYAML")

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/site-
→˓packages/plotit/plotit.py:33

29 import numpy as np
31 from uhi.typing.plottable import PlottableAxisGeneric, PlottableHistogram,␣

→˓PlottableTraits
---> 33 from . import config

34 from . import histo_utils as h1u
35 from .logging import logger

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/site-
→˓packages/plotit/config.py:285

272 return cfg
274 # def __post_init__(self):
275 # if self.x_axis_range is not None:
276 # try:

(...)
281 # raise ValueError("Could not parse x-axis-range {0}: {1}".

→˓format(self.x_axis_range, e))
282 # self.x_axis_range = lims

--> 285 @dataclass
286 class Legend(BaseConfigObject):
287 position: Position = Position(x1=0.6, y1=0.6, x2=0.9, y2=0.9)
288 columns: int = 1

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/
→˓dataclasses.py:1230, in dataclass(cls, init, repr, eq, order, unsafe_hash, frozen,␣
→˓match_args, kw_only, slots, weakref_slot)

1227 return wrap
1229 # We're called as @dataclass without parens.

-> 1230 return wrap(cls)

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/
→˓dataclasses.py:1220, in dataclass.<locals>.wrap(cls)

1219 def wrap(cls):
-> 1220 return _process_class(cls, init, repr, eq, order, unsafe_hash,

1221 frozen, match_args, kw_only, slots,
1222 weakref_slot)

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/
→˓dataclasses.py:958, in _process_class(cls, init, repr, eq, order, unsafe_hash, frozen,␣
→˓match_args, kw_only, slots, weakref_slot)

955 kw_only = True
956 else:
957 # Otherwise it's a field of some type.

--> 958 cls_fields.append(_get_field(cls, name, type, kw_only))
960 for f in cls_fields:
961 fields[f.name] = f

(continues on next page)

4 Chapter 1. Table of contents

plotit

(continued from previous page)

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/
→˓dataclasses.py:815, in _get_field(cls, a_name, a_type, default_kw_only)

811 # For real fields, disallow mutable defaults. Use unhashable as a proxy
812 # indicator for mutability. Read the __hash__ attribute from the class,
813 # not the instance.
814 if f._field_type is _FIELD and f.default.__class__.__hash__ is None:

--> 815 raise ValueError(f'mutable default {type(f.default)} for field '
816 f'{f.name} is not allowed: use default_factory')
818 return f

ValueError: mutable default <class 'plotit.config.Position'> for field position is not␣
→˓allowed: use default_factory

Most of the returned objects are either (lists of) simple objects that represent a part of the configuration, e.g. a single
plot. The classes are implemented as data classes. The list returned in samples is based on the entries in the files
block of the configuration file, but using the grouping specified by their group attributes and the list of groups, such
that each entry corresponds to a visible contribution in the plots.

Since the File and Group classes also contain functionality for the efficient loading and summing of the histograms,
the pure configuration part is kept in a separate class (also a data class), under the cfg attribute. For groups the list of
grouped files can be found under files.

[smp.cfg for smp in samples]

Typical plots contain an observed histogram and expectation stack. Since the former may be the sum of multiple
datasets, it is also handled as a stack:

p = plots[0]
from plotit.plotit import Stack
expStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type == "MC"])
obsStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type == "DATA"])

The above works because both the File and Group class have a getHist method, which loads a single histogram from
a file, or triggers the loading of multiple histograms and adds them up, respectively.

getHist returns a small object similar to a smart pointer: for a single file it holds the pointer to the (Py)ROOT
histogram, for a group of stack it lazily constructs the sum histogram, or adds up the contents and squared weights
arrays, depending on which method is called (more details will be added once the interfaces are more stable). These
smart pointer or histogram handle classes also implement the uhi PlottableHistogram protocol, so they can directly
be used with e.g. mplhep:

from matplotlib import pyplot as plt
fig, ax = plt.subplots()
ax.set_xlim(*p.x_axis_range)
import mplhep
mplhep.histplot(obsStack, histtype="errorbar", color="k")
mplhep.histplot(expStack.entries, stack=True, histtype="fill", color=[e.style.fill_color␣
→˓for e in expStack.entries])
ax.set_xlabel(p.x_axis, loc="right")
ax.set_ylabel(p.y_axis, loc="top")
mplhep.cms.label(data=True, label="Internal", lumi=config.getLumi())

1.1. Getting started 5

https://docs.python.org/3/library/dataclasses.html
https://uhi.readthedocs.io/
https://mplhep.readthedocs.io/

plotit

1.2 Overview

Two command-line scripts are provided: iPlotIt and pyPlotIt. Both have a similar interface as the plotIt exe-
cutable: they take a YAML configuration file as a positional argument, and optional --histodir and --eras argu-
ments, to pass a different histograms directory (in case they are not in the same directory as the configuration file) and
set of data-taking periods (eras) to consider. pyPlotIt mimics the plotIt batch plot production, but is currently not
very useful, given the much more limited support for styling options.

iPlotIt is the best place to get started: it loads a configuration file and then opens an IPython shell to inspect it, and
interactively load and manipulate histograms. Usually it can be used as

iPlotIt plots.yml

The available objects are:

• config, the Configuration object corresponding to the top level of the YAML file (excluding the sections that
are parsed separately)

• samples, a list of Group or ungrouped File objects (stateful, see below), which correspond to the groups and
files sections of the configuration file and can be used to retrieve the histograms for a plot

• plots, a list of Plot objects, which corresponds to the plots section of the configuration file

• systematics, a list of systematic uncertainties (SystVar objects), which corresponds to the systematics
section of the configuration file

• legend, the parsed legend section, with the list of entries

From a script the same objects can be obtained by calling the loadFromYAML() method. There is one difference: this
method returns a list of plots, whereas iPlotIt provides a dictionary where each plot is stored with its name attribute
as a key—so they are equivalent, the latter is only done for convenience.

Each file contains a histogram (possibly with systematic variations) for every plot. These are combined in groups if the
file belongs to a group, or directly added as a contribution to a stack in the plot. The following example illustrates how
to retrieve the histograms, and construct the expected and observed stacks for a plot:

mcSamples = [smp for smp in samples if smp.cfg.type == "MC"]
dataSamples = [smp for smp in samples if smp.cfg.type == "DATA"]
expStack = Stack(entries=[smp.getHist(plot) for smp in mcSamples])
obsStack = Stack(entries=[smp.getHist(plot) for smp in dataSamples])

The drawing of the stacks depends on the type: for MC the contributions, which can be accessed as expStack.entries
are usually drawn stacked in different colours; for data only the sum is drawn. The getHist method of the samples
returns a FileHist for File or a GroupHist for Group, which are a smart pointer to a TH1F object or the on-demand
constructed sum of them for the different files in the group, respectively. These are described in more detail in the next
section.

1.3 Architecture

This package was designed to potentially replace plotIt in the long run, so a few design choices were made with per-
formance in mind, and others slightly over-engineered to provide maximal flexibility for future development. The two
main distinctions to keep in mind are between configuration and stateful classes, and between raw histogram pointers
and smart pointers.

The former is relatively straightforward, but causes some duplication: the configuration file is initially parsed to classes
that represent the configuration, but carry no additional state; they are essentially the dictionaries from the YAML

6 Chapter 1. Table of contents

https://ipython.org
https://github.com/cp3-llbb/plotIt

plotit

parsing, but with some additional structure based on the type information. For many things this is sufficient, but for
loading histograms from files the files need to be opened, and for efficiency a pointer to the open file should be stored.
This is why stateful File and Group classes exist in plotit.plotit, which carry the configuration-only part as their
cfg attribute.

Smart histogram pointers are introduced for performance reasons: the most time-consuming part of running plotIt in
practice is opening ROOT files and retrieving histograms (this can be hundreds of histograms spread out over dozens
of files for a single plot, with typical runs producing hundreds of plots), and these histograms are also what drives the
memory usage when producing histograms in batch mode. The FileHist class allows to control when histograms are
read from the file: it provides a handle to the histogram, but postpones loading it from disk until the contents is first
accessed. It is also possible to force loading and unloading the TH1 objects, which allows a simple implementation of
the strategy adopted by plotIt, where all histograms needed for a set of plots are loaded from each file in one go, and
cleaned up after the plots are produced.

FileHist is part of a class hierarchy, with BaseHist defining the common interface and basic functionality, and
MemHist and SumHist implementing the same interface as FileHist for histograms that are not loaded from a file
and groups of histograms that should be added, respectively. Stack is an extension of SumHist that represents a stack
of groups and files. The common interface provides direct access to the TH1 objects, as well as access to the contents
and sumw2 arrays as NumPy arrays, which allows to adopt a very pythonic style for implementing custom plots or other
scripts.

1.4 Reference

1.4.1 YAML configuration parsing

A plotIt YAML configuration file should have the following structure:

configuration:
Configuration block

files:
file_name:
File block

...
groups: # optional
group_name:
Group block

...
plots:
plot_name:
Plot block

...
systematics: # optional
just name (for shape) or name with systematic block
...

legend: # optional
legend block

Such YAML files can be parsed with the loadFromYAML() method. It will return instances of the classes defined in
the plotit.config module, whose attribute listings below serve as a reference of the allowed attributes in each block,
and their types.

1.4. Reference 7

https://root.cern
https://numpy.org
https://github.com/cp3-llbb/plotIt

plotit

8 Chapter 1. Table of contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

9

	Table of contents
	Getting started
	Installation
	Example: loading histograms from a plotIt configuration

	Overview
	Architecture
	Reference
	YAML configuration parsing

	Indices and tables

