

pyplotit: a python reimplementation of plotIt

The plotIt [https://github.com/cp3-llbb/plotIt] tool was developed to efficiently produce large numbers of
stack plots that use the same set of samples.
It is a standalone C++ executable that is very good at what it does,
but it is not very customisable or flexbile: sometimes one “just” wants to
get a few histograms to make a specific plot instead of a whole batch, but
still take advantage of the information stored in the configuration file and
the naming conventions.

This package tries to bridge that gap: it aims to provide a simple python
interface to the de-facto file format defined by plotIt [https://github.com/cp3-llbb/plotIt]: a YAML configuration
file and a director of ROOT [https://root.cern] files with histograms.
Basic plotting methods are provided, but they are currently far from supporting
all the styling options of plotIt [https://github.com/cp3-llbb/plotIt].

Table of contents

	Introduction

	Getting started
	Installation

	Example: loading histograms from a plotIt configuration

	Overview

	Architecture

	Reference
	YAML configuration parsing

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Installation

pyplotit [https://gitlab.cern.ch/cp3-cms/pyplotit] is a pure python package,
so the latest version can be installed with

pip install git+https://gitlab.cern.ch/cp3-cms/pyplotit.git

or, for an editable install when frequent updates and/or testing of changes
is expected, with

git clone https://gitlab.cern.ch/cp3-cms/pyplotit.git
pip install -e ./pyplotit

Example: loading histograms from a plotIt configuration

If you do not have a plotIt configuration and the corresponding ROOT files
around, you can use the following commands to generate an example; they are
also used here for the rest of the example

!wget -q https://gitlab.cern.ch/cp3-cms/pyplotit/-/raw/master/tests/data/ex1_syst.yml
!wget -q https://raw.githubusercontent.com/cp3-llbb/plotIt/master/test/generate_files.C
!mkdir -p files
!root -l -b -q generate_files.C

Show code cell output
Hide code cell output

Processing generate_files.C...

We can load the configuration file ex1_syst.yml in pyplotit as follows:

import plotit
config, samples, plots, systematics, legend = plotit.loadFromYAML("ex1_syst.yml")

ValueError Traceback (most recent call last)
Cell In[2], line 1
----> 1 import plotit
 2 config, samples, plots, systematics, legend = plotit.loadFromYAML("ex1_syst.yml")

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/site-packages/plotit/__init__.py:1
----> 1 from .plotit import loadFromYAML
 2 from .version import version as __version__
 4 __all__ = ("__version__", "loadFromYAML")

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/site-packages/plotit/plotit.py:33
 29 import numpy as np
 31 from uhi.typing.plottable import PlottableAxisGeneric, PlottableHistogram, PlottableTraits
---> 33 from . import config
 34 from . import histo_utils as h1u
 35 from .logging import logger

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/site-packages/plotit/config.py:285
 272 return cfg
 274 # def __post_init__(self):
 275 # if self.x_axis_range is not None:
 276 # try:
 (...)
 281 # raise ValueError("Could not parse x-axis-range {0}: {1}".format(self.x_axis_range, e))
 282 # self.x_axis_range = lims
--> 285 @dataclass
 286 class Legend(BaseConfigObject):
 287 position: Position = Position(x1=0.6, y1=0.6, x2=0.9, y2=0.9)
 288 columns: int = 1

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/dataclasses.py:1230, in dataclass(cls, init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only, slots, weakref_slot)
 1227 return wrap
 1229 # We're called as @dataclass without parens.
-> 1230 return wrap(cls)

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/dataclasses.py:1220, in dataclass.<locals>.wrap(cls)
 1219 def wrap(cls):
-> 1220 return _process_class(cls, init, repr, eq, order, unsafe_hash,
 1221 frozen, match_args, kw_only, slots,
 1222 weakref_slot)

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/dataclasses.py:958, in _process_class(cls, init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only, slots, weakref_slot)
 955 kw_only = True
 956 else:
 957 # Otherwise it's a field of some type.
--> 958 cls_fields.append(_get_field(cls, name, type, kw_only))
 960 for f in cls_fields:
 961 fields[f.name] = f

File ~/checkouts/readthedocs.org/user_builds/pyplotit/conda/latest/lib/python3.11/dataclasses.py:815, in _get_field(cls, a_name, a_type, default_kw_only)
 811 # For real fields, disallow mutable defaults. Use unhashable as a proxy
 812 # indicator for mutability. Read the __hash__ attribute from the class,
 813 # not the instance.
 814 if f._field_type is _FIELD and f.default.__class__.__hash__ is None:
--> 815 raise ValueError(f'mutable default {type(f.default)} for field '
 816 f'{f.name} is not allowed: use default_factory')
 818 return f

ValueError: mutable default <class 'plotit.config.Position'> for field position is not allowed: use default_factory

Most of the returned objects are either (lists of) simple objects that represent
a part of the configuration, e.g. a single plot.
The classes are implemented as
data classes [https://docs.python.org/3/library/dataclasses.html].
The list returned in samples is based on the entries in the files
block of the configuration file, but using the grouping specified by their
group attributes and the list of groups, such that each entry corresponds
to a visible contribution in the plots.

Since the File and Group classes also contain functionality
for the efficient loading and summing of the histograms, the pure configuration
part is kept in a separate class (also a data class), under the cfg
attribute.
For groups the list of grouped files can be found under files.

[smp.cfg for smp in samples]

Typical plots contain an observed histogram and expectation stack.
Since the former may be the sum of multiple datasets, it is also handled as a
stack:

p = plots[0]
from plotit.plotit import Stack
expStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type == "MC"])
obsStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type == "DATA"])

The above works because both the File and Group class have a getHist
method, which loads a single histogram from a file, or triggers the loading of
multiple histograms and adds them up, respectively.

getHist returns a small object similar to a smart pointer: for a single file it holds the pointer to the (Py)ROOT histogram, for a group of stack it lazily constructs the sum histogram, or adds up the contents and squared weights arrays, depending on which method is called (more details will be added once the interfaces are more stable).
These smart pointer or histogram handle classes also implement the uhi [https://uhi.readthedocs.io/] PlottableHistogram protocol, so they can directly be used with e.g. mplhep [https://mplhep.readthedocs.io/]:

from matplotlib import pyplot as plt
fig, ax = plt.subplots()
ax.set_xlim(*p.x_axis_range)
import mplhep
mplhep.histplot(obsStack, histtype="errorbar", color="k")
mplhep.histplot(expStack.entries, stack=True, histtype="fill", color=[e.style.fill_color for e in expStack.entries])
ax.set_xlabel(p.x_axis, loc="right")
ax.set_ylabel(p.y_axis, loc="top")
mplhep.cms.label(data=True, label="Internal", lumi=config.getLumi())

Overview

Two command-line scripts are provided: iPlotIt and pyPlotIt.
Both have a similar interface as the plotIt executable: they take a YAML
configuration file as a positional argument, and optional --histodir and
--eras arguments, to pass a different histograms directory (in case they are
not in the same directory as the configuration file) and set of data-taking
periods (eras) to consider.
pyPlotIt mimics the plotIt batch plot production, but is currently
not very useful, given the much more limited support for styling options.

iPlotIt is the best place to get started: it loads a configuration
file and then opens an IPython [https://ipython.org] shell to inspect it, and interactively load
and manipulate histograms.
Usually it can be used as

iPlotIt plots.yml

The available objects are:

	config, the Configuration object corresponding
to the top level of the YAML file (excluding the sections that are parsed
separately)

	samples, a list of Group or ungrouped
File objects (stateful, see below), which
correspond to the groups and files sections of the configuration file
and can be used to retrieve the histograms for a plot

	plots, a list of Plot objects, which
corresponds to the plots section of the configuration file

	systematics, a list of systematic uncertainties
(SystVar objects), which corresponds to
the systematics section of the configuration file

	legend, the parsed legend section, with the list of entries

From a script the same objects can be obtained by calling the
loadFromYAML() method.
There is one difference: this method returns a list of plots,
whereas iPlotIt provides a dictionary where each plot is stored
with its name attribute as a key—so they are equivalent,
the latter is only done for convenience.

Each file contains a histogram (possibly with systematic variations)
for every plot.
These are combined in groups if the file belongs to a group, or directly
added as a contribution to a stack in the plot.
The following example illustrates how to retrieve the histograms,
and construct the expected and observed stacks for a plot:

mcSamples = [smp for smp in samples if smp.cfg.type == "MC"]
dataSamples = [smp for smp in samples if smp.cfg.type == "DATA"]
expStack = Stack(entries=[smp.getHist(plot) for smp in mcSamples])
obsStack = Stack(entries=[smp.getHist(plot) for smp in dataSamples])

The drawing of the stacks depends on the type: for MC the contributions,
which can be accessed as expStack.entries are usually drawn stacked
in different colours; for data only the sum is drawn.
The getHist method of the samples returns a
FileHist for File or a
GroupHist for Group,
which are a smart pointer to a TH1F object or the on-demand constructed
sum of them for the different files in the group, respectively.
These are described in more detail in the next section.

Architecture

This package was designed to potentially replace plotIt [https://github.com/cp3-llbb/plotIt] in the long run,
so a few design choices were made with performance in mind, and others
slightly over-engineered to provide maximal flexibility for future
development.
The two main distinctions to keep in mind are between configuration and
stateful classes, and between raw histogram pointers and smart pointers.

The former is relatively straightforward, but causes some duplication:
the configuration file is initially parsed to classes that represent
the configuration, but carry no additional state; they are essentially
the dictionaries from the YAML parsing, but with some additional structure
based on the type information.
For many things this is sufficient, but for loading histograms from files
the files need to be opened, and for efficiency a pointer to the open file
should be stored.
This is why stateful File and
Group classes exist in plotit.plotit,
which carry the configuration-only part as their cfg attribute.

Smart histogram pointers are introduced for performance reasons: the most
time-consuming part of running plotIt in practice is opening ROOT [https://root.cern] files
and retrieving histograms (this can be hundreds of histograms spread out over
dozens of files for a single plot, with typical runs producing hundreds of
plots), and these histograms are also what drives the memory usage
when producing histograms in batch mode.
The FileHist class allows to control when histograms
are read from the file: it provides a handle to the histogram, but postpones
loading it from disk until the contents is first accessed.
It is also possible to force loading and unloading the TH1 objects,
which allows a simple implementation of the strategy adopted by plotIt,
where all histograms needed for a set of plots are loaded from each file in one
go, and cleaned up after the plots are produced.

FileHist is part of a class hierarchy, with
BaseHist defining the common interface and basic
functionality, and MemHist and
SumHist implementing the same interface as
FileHist for histograms that are not loaded from
a file and groups of histograms that should be added, respectively.
Stack is an extension of
SumHist that represents a stack of groups and files.
The common interface provides direct access to the TH1 objects, as well as
access to the contents and sumw2 arrays as NumPy [https://numpy.org] arrays, which allows to
adopt a very pythonic style for implementing custom plots or other scripts.

Reference

YAML configuration parsing

A plotIt [https://github.com/cp3-llbb/plotIt] YAML configuration file should have the following structure:

configuration:
 # Configuration block
files:
 file_name:
 # File block
 ...
groups: # optional
 group_name:
 # Group block
 ...
plots:
 plot_name:
 # Plot block
 ...
systematics: # optional
 # just name (for shape) or name with systematic block
 ...
legend: # optional
 # legend block

Such YAML files can be parsed with the loadFromYAML()
method.
It will return instances of the classes defined in
the plotit.config module, whose attribute listings below serve as
a reference of the allowed attributes in each block, and their types.

Index

 nav.xhtml

 Table of Contents

 		
 pyplotit: a python reimplementation of plotIt

 		
 Getting started

 		
 Installation

 		
 Example: loading histograms from a plotIt configuration

 		
 Overview

 		
 Architecture

 		
 Reference

 		
 YAML configuration parsing

_static/file.png

_static/minus.png

_static/plus.png

